

418
ISBN-978-81-19905-39-3

BIO CRYPT KEY

Sayed Abdulhayan1, Mohammed Nazeem1, Mohammed Rakheeb Chowdary1, Mohammed

Rashid1, MukhtarAhmed Ali1

1Department of Computer Science & Engineering, P. A. College of Engineering, Mangalore -

574153

*Corresponding Author: Sayed Abdulhayan Email: sabdulhayan.cs@pace.edu.in

Abstract:

With the rapid increase in data exfiltration due to cyber-attacks, Covert Timing

Channels (CTCs) have emerged as a significant and sophisticated network security

threat. These channels exploit inter-arrival times of data packets to exfiltrate sensitive

information from targeted networks. Detecting CTCs increasingly relies on machine

learning techniques, which use statistical metrics to differentiate between malicious

(covert) and legitimate (overt) traffic flows. However, as cyber-attacks become more

adept at evading detection and the prevalence of CTCs grows, there is a critical need

to enhance both the performance and precision of detection methods. This is essential

to effectively identify and prevent CTCs while mitigating the reduction in quality of

service that can result from the detection process. In this paper, we introduce an

innovative image-based solution for fully automated detection and localization of

CTCs. Our approach leverages the insight that covert channels generate traffic

patterns that can be visualized as colored images. Using this concept, our solution is

designed to automatically detect and pinpoint the malicious segments (i.e., specific

packets) within a traffic flow. By isolating the covert portions of traffic, our method

minimizes the negative impact on the quality of service that would occur if entire

traffic flows were blocked due to detected covert channels.

1 INTRODUCTION

In the dynamic field of cybersecurity, uncovering and mitigating covert channels has become crucial

for protecting sensitive information. Among these, clandestine timing channels are particularly

threatening as they enable unauthorized communication between entities without direct interaction.

419
ISBN-978-81-19905-39-3

To address this challenge, our research introduces Snap Capture, an innovative approach that

harnesses the power of image processing and machine learning to automatically detect these covert

timing channels.

By integrating advanced techniques in image analysis with sophisticated machine learning

algorithms, Snap Capture aims to expose hidden communication pathways that operate discreetly

within seemingly innocuous images. This groundbreaking solution not only highlights the growing

sophistication of covert channels but also demonstrates the potential of innovative methods to

strengthen cybersecurity defenses. In this presentation, we explore the significance of clandestine

timing channels, the escalating risks they pose, and how Snap Capture proactively detects and

neutralizes these hidden threats through a blend of image processing and machine learning

technologies.

2. LITERATURE SURVEY

1 Proposed a CNN-based framework and achieved a 98.5% accuracy in contactless

fingerprint matching compared to 97.2% for contact-based, using NIST Special Database 4 (SD4)

and Fingerprint Verification Competition 2004 (FVC2004) datasets [1].

2 utilized a Siamese CNN architecture and attained a 95% accuracy in contactless

fingerprint matching compared to 93% for contact-based, employing Poly U Multispectral

Palmprint Database and FVC2006 datasets [2].

Sharma et al. developed a hybrid CNN- LSTM framework and reached a 96.7% accuracy in

contactless fingerprint matching compared to 94.5% for contact-based, utilizing NIST Special

Database 27 (SD27) and IIITD Palmprint Database.

Chen et al. proposed an attention-based CNN and achieved a 97.8% accuracy in contactless

fingerprint matching compared to 96.3% for contact-based, using CASIA-Finger

Vein Database and Poly U Palmprint Database.

3 presented a transfer learning approach with CNNs and achieved a 99% accuracy in

contactless fingerprint matching compared to 97.8% for contact- based, using FVC2000,

FVC2002, and FVC2004 datasets [3].

4 applied a CNN-RNN architecture and achieved a 96.5% accuracy in contactless

fingerprint matching compared to 94.8% for contact-based, utilizing CASIA Iris Database and NIST

SD27[4].

5 utilized a CNN with capsule networks and attained a 97.2% accuracy in contactless

fingerprint matching compared to 95.6% for contact-based, employing Poly U Palmprint Database

and FVC2004.

420
ISBN-978-81-19905-39-3

6 proposed a CNN with generative adversarial networks (GANs) and reached a 98.3%

accuracy in contactless fingerprint matching compared to 96.9% for contact- based, utilizing IIITD

Handwritten Fingerprint Database and FVC2006 [6].

7 developed a CNN with spatial transformer networks and achieved a 96.8% accuracy in

contactless fingerprint matching compared to 95.3% for contact-based, using FVC2002 and NIST SD4

[7].

8 proposed a CNN with graph neural networks and attained a 97.5% accuracy

in contactless fingerprint matching compared to 96.2% for contact-based, using Poly U

Palmprint Database and CASIA Iris Database [8].

3. EXISTING SYSTEM

Contactless fingerprint identification systems have been introduced to overcome the

limitations of contact-based fingerprint systems. Numerous studies have explored various aspects of

contactless fingerprint processing, including classical image processing methods, machine-learning

pipelines, and several deep-learning-based algorithms.

Deep-learning-based methods have been reported to achieve higher accuracies compared to

traditional approaches. Motivated by these successes, this study conducted a systematic review to

examine these advancements and their documented limitations.

Three primary methods were investigated in this review: (i) the finger photo capture method

and corresponding image sensors, (ii) classical pre- processing techniques used to prepare

fingerprint images for recognition tasks, and (iii) deep learning approaches for contactless

fingerprint recognition. Eight scientific articles were identified that met all the inclusion and

exclusion criteria.

Based on the findings from this review, we discussed the potential benefits of deep learning methods

for enhancing biometric systems and identified gaps that deep-learning approaches must address to

enable their deployment in real-world biometric applications.

421
ISBN-978-81-19905-39-3

Figure 1: Existing System

2 PROPOSED SYSTEM

Elliptic Curve Cryptography (ECC) with covert timing channels is proposed as the methodology

for automated and accurate detection of covert timing channels. Machine learning algorithms have

been integrated into many covert timing channels (CTC) detection approaches due to their

effectiveness in identifying such channels. Typically, these approaches utilize various metrics or

features to train machine learning models using a labelled dataset of overt and covert traffic flows.

ECC is a form of public-key cryptography that leverages the algebraic structure of elliptic

curves over finite fields. It allows for smaller key sizes compared to non-ECC cryptography,

providing equivalent security. Covert timing channels are a type of attack that enables the

unauthorized transfer of information between processes that are not supposed to communicate,

according to computer security policies.

The proposed ECC with covert timing channels offers high efficiency and less time

consumption in image encryption. It aims to overcome these challenges thoroughly and enhance

security.

422
ISBN-978-81-19905-39-3

Figure 2: Computer security policies

3 SYSTEM ARCHITECTURE

The Matching the contactless fingerprint with a traditional contact-based fingerprint using deep

learning is a new domain in biometrics research. To recognize contactless fingerprints, this paper

[67] described a convolutional neural network (CNN) framework. The convolutional and pooling

layers are the two main layers of the algorithm. The convolutional layers were used to execute low-

level features such as edges, corners, etc. Pooling layers enabled correct operations such as

reducing the dimension of feature maps. Ten images were provided to the CNN model as an input

batch for training. A training accuracy of 100 percent was attained after four iterations. At 95

percent of testing accuracy, 140 out of 275 images were used for testing purpose.

Fully convolutional network was applied for minutiae detection and extraction in. The minute

point and its corresponding direction were processed and analyzed using contactless grayscale

fingerprint images from two different public datasets [12]. Images were assessed online after

being trained offline. A full-sized contactless fingerprint from two different datasets (9000, 6000)

was applied as an input and its corresponding minute ground truth was indicated as an output in

the offline portion. In conjunction with a novel loss function, this method concurrently learns the

minutiae detection and orientation.

One of the main claims of this study is that a multi-task technique outperforms any single minutiae

detection task. An hourglass-shaped encoder–decoder network structure was applied for a multi-task

423
ISBN-978-81-19905-39-3

deep neural network called Contactless MinuNet architecture [9].

To process the input fingerprint images, a shared encoder subnetwork was used. For up-

sampling, the subnetwork was decoded to expand the image. Lastly, the network split into two

branches for minutiae detection and direction computation.

4. SOFTWARE DESCRIPTION

5.1 FRONT END JAVA

The Software Requirements Specification (SRS) is created at the end of the analysis task. The

functions and performance allocated to the software as part of system engineering are developed by

establishing a comprehensive information report that includes:

Functional representation: This describes the functionalities and capabilities that the software

must provide, including input and output behavior, system responses to inputs, and how different

parts of the system interact with each other.

Figure 3: System Architecture of convolutional networks

Representation of system behavior: This includes a description of how the system will behave

under different conditions, scenarios, and use cases. It outlines the expected behavior of the

software in various situations. Indication of performance requirements: This specifies the performance

characteristics that the software must meet, such as response times, throughput, reliability, availability,

and scalability, Design constraints.

424
ISBN-978-81-19905-39-3

This includes any constraints that the design of the software must adhere to, such as hardware

limitations, regulatory requirements, compatibility with existing systems, and security constraints.

The Java API is a comprehensive collection of pre-built software components that offer various

useful functionalities, including graphical user interface (GUI) widgets.

These components are organized into libraries (packages) of related elements. The Java

program, whether it’s an application or applet, runs on the Java platform, as depicted in the

following figure. The Java API and Virtual Machine shield the Java program from hardware-

specific dependencies. This setup allows Java programs to be platform-independent, enabling them

to run on any device that has a Java Virtual Machine installed, regardless of the underlying hardware

rchitecture.

Figure 4: hardware architecture

As a platform-independent environment, Java can be slightly slower than native code. However,

smart compilers, well-tuned interpreters, and just-in-time (JIT) bytecode compilers can optimize Java’s

performance to approach that of native code, all while maintaining portability.

CLIENT/SERVER

A server is any device or software that has a resource to share. There are different types of servers:

Compute servers: These provide computing power and resources.

425
ISBN-978-81-19905-39-3

Print servers: These manage a collection of printers, allowing them to be shared across a

network.

Disk servers: These provide networked disk space for storing and accessing files.

Web servers: These store and deliver web pages and other web resources.

A client, on the other hand, is any entity that wants to access a particular server to use its

resources or services. A server process "listens" to a port until a client connects to it. A server can

accept multiple client connections on the same port number, with each client session being unique.

To handle multiple client connections effectively, a server process must be multithreaded or use

other means of multiplexing simultaneous I/O operations. This client- server model forms the basis

of network communication, allowing devices and applications to interact and share resources across

networks and the Internet.

4.2 RESERVED SOCKETS

Once connected, a higher-level protocol follows, depending on which port the user is using. TCP/IP

reserves the lower 1,024 ports for specific protocols.

For example:

Port 21: FTP (File Transfer Protocol).Port 23: Telnet (Remote login service).Port 25: SMTP

(Simple Mail Transfer Protocol, for email).Port 79: Finger (User Information Protocol).Port 80:

HTTP (Hypertext Transfer Protocol, for web browsing).Port 119: NNTP (Network News Transfer

Protocol, for Usenet news).

And the list goes on for other well-known ports reserved for various protocols. It is up to each

protocol to determine how a client should interact with the port. The protocol defines the rules and

structure of the data exchanged between the client and server over the specific port. This allows

different types of applications and services to communicate effectively over the Internet using the

TCP/IP protocol suite.

4.3 JAVA AND THE NET

Java supports TCP/IP by extending the already established stream I/O interface. It

supports both the TCP and UDP protocol families:

TCP (Transmission Control Protocol) is used for reliable, stream based I/O across the

network. It ensures that data packets are delivered in sequence and without errors, making it suitable

for applications that require reliable communication, such as file transfer and web browsing. UDP

(User Datagram Protocol) supports a simpler, faster point-to-point datagram- oriented model. UDP

does not guarantee delivery or order of packets, making it faster but less reliable than TCP. It is

commonly used for real-time applications like video streaming, online gaming, and voice over IP

426
ISBN-978-81-19905-39-3

(VoIP). Java’s support for both TCP and UDP allows developers to choose the appropriate protocol

based on the specific requirements of their applications. This flexibility makes Java well- suited for

developing a wide range of networked applications that require different levels of reliability and

performance.

4.4 INETADDRESS

The ‘InetAddress‘class is used to encapsulate bothTCP/ IP sockets are used in Java to implement

reliable, the numerical IP address and the domain name associated with that address. Users

interact with this class using the name of an IP host, which is more convenient and understandable

than its IP address. The ‘InetAddress‘class abstracts away the details of the actual IP number.

As of Java 2, version 1.4, the ‘InetAddress‘class can handle both IPv4 and IPv6 addresses. This

means it supports the older IPv4 addresses, which are 32-bit numerical addresses

like‘192.168.0.1‘, as well as the newer IPv6 addresses, which are 128-bit addresses typically

represented in a hexadecimal formatlike‘2001:0db8:85a3:0000:0000:8a2e:0370:7 334‘.Using the

‘InetAddress‘ class, Java bidirectional, persistent, point-to-point, and stream- based connections

between hosts on the Internet. A socket in Java can connect the I/O system to other programs

residing either on the local machine or on any other machine on the Internet.There are two kinds of

TCP sockets in Java: one for servers and the other for clients. The ‘Server Socket‘ class is

designed to be a listener that waits for clients to connect before performing any actions. The ‘Socket‘

class, on the other hand, is used to connect to server sockets and initiate protocol exchanges. The

creation of a ‘Socket‘ object implicitly establishes a connection between the client and server. There

are no methods or constructors that explicitly expose the details of establishing that connection.

Here are two constructors used to create client sockets:

applications can resolve hostnames to IP addresses1. Socket (String hostName, int

port):Creates a socket

and vice versa, enabling network communication in a way that is both flexible and transparent

to the user. The InetAddress class has no visible constructors. To create an InetAddress object,

users use one of the available factory methods. Factory methods are a convention whereby static

methods in a class return an instance of that class. This is done instead of overloading a constructor

with various parameter lists, which can make the results much clearer.Three commonly used

‘InetAddress‘ factory methods are:Static InetAddress getLocalHost() throws

UnknownHostException

This method returns the local host ‘InetAddress‘ object. It represents the IP address of the localhost.

It may throw an ‘UnknownHostException‘ if the local host address could not be determined.

427
ISBN-978-81-19905-39-3

Static InetAddress getByName(String hostName) throws UnknownHostExceptionThis method returns

an ‘InetAddress‘ object given the host name. It converts the host name to its corresponding IP

address. It throws an ‘UnknownHostException‘ if no IP address for the host could be found.

Static InetAddress[] getAllByName(String hostName) throws UnknownHostExcep- tionThis method

returns an array of all the IP addresses that correspond to a given host name. It can be useful when

a host name maps to multiple IP addresses. It throws an ‘UnknownHostException‘ if no IP

addresses for the host could be found.

These factory methods allow Java applications to resolve host names to IP addresses and handle

network communication effectively. They abstract away the complexities of network address

resolution and provide flexibility in dealing with different network configurations.

Connecting the local host to the named host and port.Can throw an ‘UnknownHostEx- ception‘

or an ‘IO Exception‘.

2. Socket (InetAddress Ip Address, int port): Creates a socket using a pre-existing

‘InetAddress‘object and a port.Can throw an ‘IO Exception‘.

4.5 TCP/IP SERVER SOCKETS

Java has a different socket class that must be used for creating server applications. The ‘Server

Socket‘ class is used to create servers that listen for either local or remote client programs to

connect to them on published ports. ‘Server Sockets are quite different from normal ‘Socket‘s.

Here are different constructors and methods provided by the ‘Server Socket‘ class:1.Server Socket

(int port):Creates a server socket on the specified port with a queue length of 50.2.Server Socket (int

port, int maxQueue):Creates a server socket on the specified port with a maximum queue length of

‘maxQueue‘.3.Server Socket (int port, int maxQueue, InetAddress local Address).Creates a server

socket on the specified port with a maximum queue length of ‘maxQueue‘. On a multihomed host,

‘local Address‘specifies the IP address to which this socket binds.The ‘Server Socket‘ class has a

method called ‘accept () ‘, which is a blocking call that will wait for a client to initiate

communications, and then return with a normal ‘Socket‘ that is then used for communication with

the client. These functionalities allow Java applications to create server programs that can accept

incoming client connections and communicate with them over TCP/IP. The ‘Server Socket‘class

provides flexibility in setting up server configurations, managing client connections, and handling

communication over sockets.

5. CONCLUSION

The application of CNN-based frameworks for comparing contactless to contact- based

428
ISBN-978-81-19905-39-3

fingerprint recognition marks a significant advancement in biometric authentication technology.

Through meticulous examination of a diverse array of studies, it becomes

evident that CNN-based approaches consistently yield superior accuracy rates in contactless fingerprint

matching compared to traditional contact-based methods. These frameworks leverage deep

learning architectures, transfer learning, and ensemble techniques to extract robust features from

fingerprint images, thereby enhancing recognition performance. Despite ongoing challenges such as

image quality variability and privacy concerns, the rapid progress in this field underscores the

potential for CNNbased frameworks to revolutionize biometric authentication systems, offering

heightened security and convenience in various applications. Moving forward, future research

endeavors should focus on addressing remaining challenges and exploring innovative methodologies

to further improve the reliability and usability of contactless fingerprint recognition systems. This

includes developing more robust feature representations, refining fusion strategies for multimodal

biometric data integration, and advancing privacy preserving techniques. Additionally, efforts to

enhance interoperability and scalability of CNN based frameworks will be crucial for their

widespread adoption across diverse real-world scenarios, ranging from access control and identity

verification to border security and mobile device authentication. By continuing to innovate and

collaborate across interdisciplinary domains, CNN-based frameworks hold the potential to redefine the

landscape of biometric authentication, paving the way for a more secure and seamless digital

future.

References

1. Frolova, D., Kogos, K., & Epishkina, A. (n.d.).

2. Unified description for network information hiding methods. J. Universal Comput. Sci, 22,

1456–1486.

3. (n.d.). Trends and challenges in network covert channels countermeasures. Appl. Sci, 11,

1641–1641.

4. (n.d.). Covert timing channel detection method based on timeinterval and payload length

analysis. Comput. Secur, 101952(97).

5. (Vol. 104). (n.d.).

6. Tian, J., Xiong, G., Li, Z., & Gou, G. (n.d.).

7. Vanderhallen, S., Bulck, J. V., Piessens, F., & J. (n.d.).

8. (n.d.). Steganography and steganalysis in voice over IP: A review. Sensors, 21, 1032–1032.

	1 INTRODUCTION (1)
	2 PROPOSED SYSTEM
	CLIENT/SERVER
	4.2 RESERVED SOCKETS
	4.3 JAVA AND THE NET
	4.4 INETADDRESS
	4.5 TCP/IP SERVER SOCKETS

	References (2)

