

AUTOMATED SEED SOWING

Ibrahim Alvan, Ibrahim Swabeeh, Muhammed Usaid, Muhammed Aadil, and
Asiya Hazareena*

Department of Electronics and Communication, P. A. College of Engineering, Karnataka,

Mangaluru, India

E-mail: hazareena_te@pace.edu.in

Abstract

The project focuses on developing an automated seed-sowing system leveraging the ESP8266 module to enhance precision, efficiency, and sustainability in agricultural practices. Traditional seed-sowing methods are labor-intensive and prone to human error, often resulting in inconsistent seed placement and depth, which negatively affects crop yields. This project aims to automate the seed-sowing process by integrating IoT technology with cost-effective components like the L298N motor driver and BO motors. The ESP8266 module, known for its affordability and versatile Wi-Fi capabilities, serves as the system's core, enabling wireless communication and remote monitoring via the Blynk app. This connectivity allows farmers to control and adjust the sowing process in real-time, ensuring optimal performance even without being physically present in the field. The system's design ensures precise seed placement, reducing seed wastage and promoting uniform crop growth. The L298N motor driver controls the BO motors, facilitating the movement of the seed-sowing robot along predefined d paths. The system maps the sowing path, optimizes it to minimize overlaps, and ensures thorough coverage of the field. The seed-dispensing mechanism, managed by the ESP8266, releases seeds at consistent intervals and depths, enhancing planting accuracy.

1 Introduction

Automated seed-sowing systems are crucial in modernizing agriculture, offering precision, efficiency, and significant labor savings. A prominent example is using the ESP8266 module, an affordable Wi-Fi microcontroller, to develop a smart seed-sowing robot. This system integrates key components including the ESP8266 module for wireless communication, the L298N motor driver for movement control, Battery Operated (BO) motors for mobility, and a seed-dispensing mechanism for accurate planting. The ESP8266 module is central to the system, enabling remote control and real-time monitoring through mobile applications like This connectivity allows farmers to manage and oversee the sowing process from a distance, enhancing operational convenience. The L298N motor driver orchestrates the actions of BO motors, facilitating smooth and precise navigation of the robot across the field. These motors are crucial for the robot's mobility, ensuring it can traverse various terrains effectively. The seed-dispensing mechanism is designed for precision, ensuring seeds are placed at consistent intervals and correct depths, thus promoting optimal plant growth. This level of accuracy is difficult to achieve manually and leads to better crop yields. Additionally, automation reduces the physical labor required, allowing farmers to allocate their time and resources more effectively. This automated seed-sowing system addresses many challenges traditional agriculture faces by incorporating IoT technology. It improves planting accuracy, reduces human error, and enhances overall farming efficiency. The project highlights the potential for smart technology to revolutionize agricultural practices, making them more sustainable and productive. This innovation demonstrates the practical application of the ESP8266 module in agriculture and paves the way for future advancements in smart farming.

2 Experimental Procedure

An automated seed sowing machine represents a significant leap in precision agriculture. This innovative device automates the labor-intensive process of seed sowing by utilizing wireless

control and intelligent motor operation. The ESP8266 microcontroller enables seamless connectivity with the Blynk app, allowing farmers to remotely manage the machine's functions. The L298N motor driver efficiently controls the motors responsible for the machine's movement and seed dispensing mechanisms. By integrating these components into a cohesive system, the automated seed sowing machine ensures accurate seed placement, reduces manual labor, and enhances overall agricultural efficiency. This technology holds the potential to revolutionize small-scale farming by making the planting process more efficient and less time-consuming.

2.1 Components

- **3** ESP8266 Board: For wireless communication and control
- **4** L298N Motor Driver: To control the speed and direction of the motors
- 5 BO Motors: For movement and seed sowing
- **6** Chassis: To mount the motors and other components
- 7 Power Supply: To power the ESP8266 and motors
- **8** Seed Dispenser: To hold and release seeds
- 9 Blynk App: For controlling the machine via a mobile app

9.1 Circuit Design and Assembly:

- 1. Connect the ESP8266: Connect the VIN pin of the ESP8266 to the power supply voltage used for the L298N, and the GND pin to the ground.
- 2. Connect the L298N Motor Driver: Connect the VCC pin of the L298N to a 9V power ISBN:97881-19905-39-3

supply, and the GND pin to the ground.

3. Attach the BO Motors: Mount the BO motors on the chassis and connect them to the L298N motor driver.

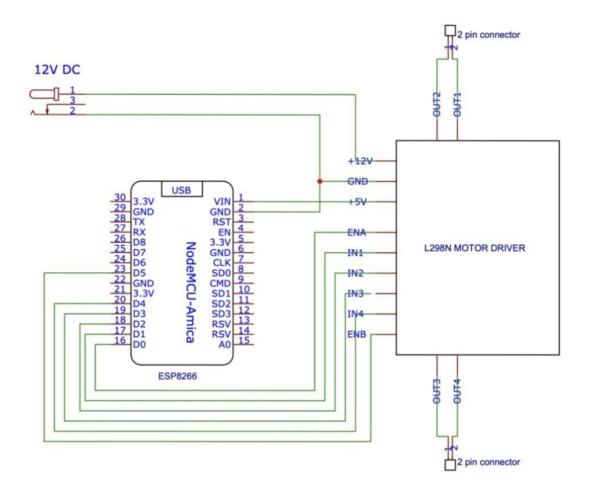


Figure 1: Circuit Diagram

9.2 Programming the ESP8266:

10 Install Arduino IDE: Download and install the Arduino IDE on your computer

2. Connect ESP8266 to Computer: Establish a serial communication between the ESP8266

and your computer for programming purposes.

3. Upload Code: Write and upload the code to the ESP8266 to control the motors and seed dispenser using the Blynk app.

10.1 Blynk App Setup:

11 Install Blynk App: Download and install the Blynk app on your mobile device

- 2. Create a Project: Create a new project in the Blynk app and configure the necessary widgets for controlling the motors and seed dispenser.
- 3. Connect to ESP8266: Connect the ESP8266 to your Wi-Fi network and link it to the Blynk app.
 - Web Dashboard

Open Blynk App, register with an email ID and then log in. After login in, we will create a project. Enter the all details as shown Below

Figure 2:

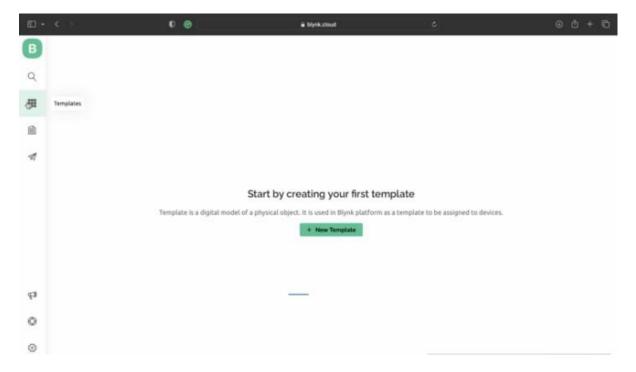


Figure 3:

Figure 4:

12 Results and Discussions

12.1 Increased Efficiency

Automated seed sowing machines drastically reduce the time required for planting compared to manual sowing. By automating the process, these machines can sow seeds at a much faster rate, allowing farmers to cover larger areas in less time. This efficiency becomes especially significant during planting seasons, when timely sowing is crucial for optimal crop growth.

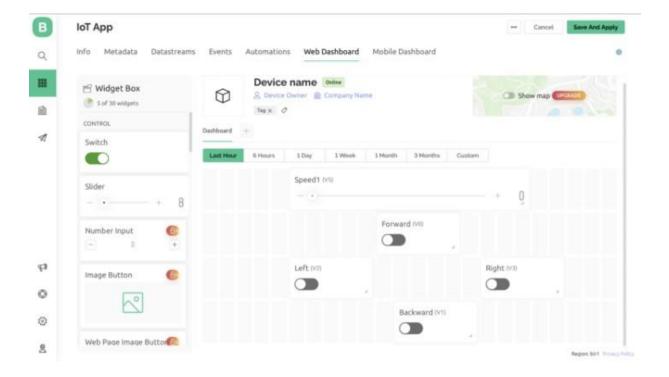


Figure 5:

Mobile Application

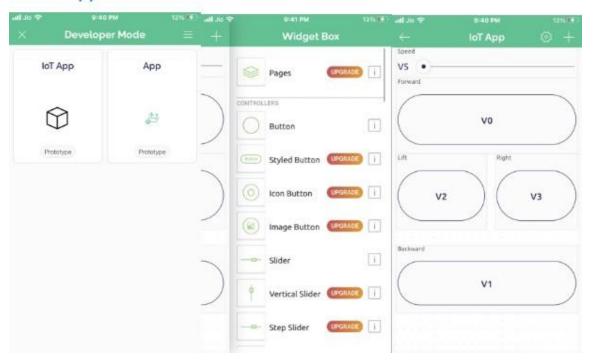


Figure 6: 2 Blynk App Setup

Traditional manual sowing methods are labor-intensive and require a significant amount of manpower. Automated seed sowing machines reduce the dependency on manual labor, allowing farmers to focus their efforts on other important agricultural tasks. This not only saves time but also reduces the overall labor costs associated with planting.

12.2 Improved Accuracy

Precise Seed Placement: Automated seed sowing machines are programmed to place seeds at exact intervals and depths, ensuring uniformity across the field. This precision results in optimal spacing, which is crucial for preventing overcrowding and ensuring each plant has enough room and resources to grow.

Reduction in Wastage: Due to the accurate placement of seeds, there is minimal seed wastage. This precision ensures that every seed has the best possible chance of germination and growth, leading to more efficient use of resources.

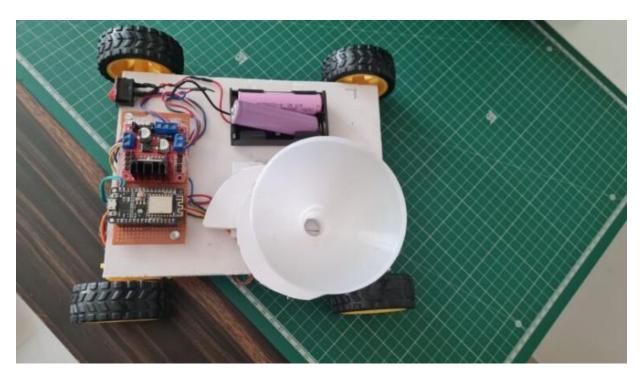


Figure 7: Working Model of Seed Sowing Machine

12.3 Reduced Labor Costs

Lower Workforce Requirement: The automation of the sowing process reduces the need for a large workforce. Fewer workers are needed to operate and monitor the machine, which translates to lower labor costs for the farm.

Cost Savings: The savings on labor can be substantial, especially over large areas of farmland. These savings can be reinvested into other areas of the farm, such as purchasing high-quality seeds, better fertilizers, or advanced farming equipment.

12.4 Consistency

Uniform Crop Stands: Automated machines provide consistent seed placement, which leads to uniform crop stands. Consistency in planting ensures that all plants receive similar amounts of sunlight, water, and nutrients, promoting even growth and reducing competition among plants.

Predictable Yields: With uniform planting, farmers can expect more predictable crop yields. This consistency makes it easier to plan for harvest, market supply, and resource allocation.

12.5 Enhanced Crop Production

Optimal Growth Conditions: Accurate seed placement ensures that each seed is sown at the ideal depth and spacing, providing optimal conditions for germination and growth. This results in healthier plants and higher yields.

Reduced Need for Thinning: Thinning, the process of removing excess seedlings, is often necessary in manual sowing to ensure proper spacing. Automated sowing reduces the need for thinning by precisely placing seeds at the correct intervals, saving time and labor.

12.6 Less Physical Strain

Reduced Physical Labor: Manual sowing is physically demanding and can lead to fatigue and injury. Automated seed sowing machines alleviate the physical burden on farmers by handling the labor-intensive task of planting.

Improved Farmer Well-being: By reducing the physical strain associated with sowing, farmers can maintain better health and well-being. This is particularly beneficial for small-scale farmers or those with limited access to a large workforce.

12.7 Conclusion

The automated seed sowing system using the ESP8266 module enhances agricultural efficiency and precision by automating the seed placement process. This system ensures seeds are sown at consistent intervals and depths, significantly reducing the need for manual labor. Real-time monitoring and control via the Blynk app provide flexibility and immediate feedback, allowing farmers to make necessary adjustments on the go. The use of cost-effective components makes the system affordable for small and medium-sized farms. Additionally, the system's scalability and adaptability allow it to perform well across various farm sizes and soil conditions. Promoting sustainable farming practices, this automated solution leads to improved crop yields, increased productivity, and better resource management. Overall, the project demonstrates the transformative potential of IoT technology in modern agriculture.

Acknowledgement: The corresponding author acknowledges the research facility provided by P.A. College of Engineering.